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DYNAMIC ANALYSIS OF RECTANGULAR PLATES
WITH STEPPED THICKNESS SUBJECTED TO

MOVING LOADS INCLUDING ADDITIONAL MASS

H. T

Department of Architecture, Kanazawa Institute of Technology, Ishikawa 921 Japan

(Received 3 July 1997, and in final form 13 January 1998)

This paper presents a simplified analytical method for rectangular plates with arbitrarily-
and eccentrically-stepped thickness, such as building slabs, subjected to moving loads,
including the effect of the additional mass. The discontinuous variation of the bending
stiffness and mass of the plate due to the variation of the thickness can be expressed
continuously by means of a characteristic function, which is defined as a Dirac function
existing continuously in a prescribed region, as proposed by the author’s previous work.
Since the bending stiffness used here is given exactly by the actual bending stiffness at each
point, a modification of the bending stiffness used in an equivalent plate analogy is
unnecessary. It is clarified from numerical computations that the effect of the additional
mass due to moving loads is significant for heavy-weight additional mass but is negligible
for usual additional mass with 65 kg. Then, approximate but accurate solutions for a
current plate subjected to stationary and moving loads are proposed by excluding the effect
of additional mass. The numerical results obtained from the proposed theory for
simply-supported and clamped plates with stepped thickness, excluding the effect of
additional mass, show good agreement with results obtained from the finite element method
using FEM code NASTRAN.
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1. INTRODUCTION

Recently, a building slab with a relatively thin stepped thickness has been used frequently
to decrease cost and to simplify construction. There is relatively little research work,
dealing with such a plate of stepped thickness. Juarez [1], Chopra [2], Laura and Filipich
[3], Filipich et al. [4], Sakata [5], Cortinez and Laura [6], and Cheung and Kong [7]
discussed about a plate with stepped thickness. In building slabs, however, the upper
surface of slabs is flat over the whole surface, and the variation of the thickness is restricted
on the lower surface. In such a plate with eccentrically-stepped thickness, the variation of
mass and rigidity are discontinuous. Takabatake et al. [8] presented a simplified analysis
for the static and dynamic problems of a rectangular plate with arbitrarily- and
eccentrically-stepped thickness. The discontinuous variation of the bending stiffness and
mass of such a plate due to arbitrarily-stepped thickness is expressed rationally as a
continuous function by means of a characteristic function proposed by Takabatake [9–11]
and Takabatake et al. [12–14]. The characteristic function is defined as a Dirac function
existing continuously in a prescribed region.

On the other hand, recently human response to vibration in building slabs has become
significant in design. The practical dynamic response must be calculated for moving loads.
The effect of the additional mass due to moving loads on slabs is unknown and is lacking.
The use of FEM code for moving loads is very costly and troublesome. Therefore, the
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analytical check to human response in practical design is judged from the response of slabs,
subjected to a concentrated load of unmoving foot impact at the midspan by means of
FEM. A simplified analysis being practical and usable for building slabs, subjected to
stationary and moving loads, is also demanded, so that the problems due to the vibration
of building slabs is removed in the preliminary stages and final stages of the design.
Although the use of FEM for building slabs is effective, it needs a computer of great
capacity and is costly and time-consuming for computation. Furthermore, it cannot solve
the dynamic problem including the effect of additional mass due to moving loads.

The purpose of this paper is to demonstrate a simplified analysis of an isotropic plate
with relatively thin eccentrically-stepped thickness, subjected to moving loads along with
the effect of additional mass. First, the effect of additional mass due to moving loads is
presented by modifying the governing equation proposed by Takabatake et al. [8] and is
clarified from numerical computations. Second, when the effect of additional mass due to
moving loads is negligible, approximate solutions as closed-form are presented. The
accuracy of the proposed solutions is established from numerical computation for
simply-supported and clamped plates.

2. GOVERNING EQUATIONS OF A PLATE WITH STEPPED THICKNESS
INCLUDING THE EFFECT OF MOVING ADDITIONAL MASS

Consider a rectangular plate with arbitrarily- and eccentrically-stepped thickness, as
shown in Figure 1. The Cartesian co-ordinate system x, y, z is employed. Ridgelines of
each eccentrically-stepped thickness are assumed to be parallel to the x- or y-axis. The
midpoint, width, and varied thickness of the ith stepped thickness being parallel to the
y-axis are indicated by xi , bxi, and hxi, respectively, in which hxi is measured from the lower
surface of the reference slab excluding stepped thickness. Similarly for the jth stepped
thickness being parallel to the x-axis they are given by yj , byj , and hyj . In a part where the
ith and jth stepped thickness being parallel to the x- and y-axes, respectively, cross each
other the maximum value of their stepped thickness hxi and hyj is indicated with hxyi,j .

Figure 1. Co-ordinates of a rectangular plate with arbitrarily-stepped thickness.
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The variation of a slab’s thickness in most building slabs is relatively small. Therefore,
for the sake of simplicity, the neutral surface of a current plate is assumed to be located
on a surface that bisects the thickness at each point; and to vary discontinuously at the
boundary line between eccentrically-stepped thickness and reference thickness. This
engineering assumption, as shown in previous work [8], makes the formulation of the
current plate simple and is proven to be practically effective within the range of hxi /h0 =1.0
and hyj /h0 =1.0, in which h0 is the thickness of the reference slab.

Then, consider the bending problem of isotropic rectangular plates in small
deformations based on the validity of the Kirchhoff–Love hypotheses. Using the above
engineering assumption to the neutral surface, the flexural rigidity and mass of current
plates with stepped thickness, which are functions of x and y, are expressed by D0 d(x, y)
and m0 ah (x, y), respectively, in which D0 and m0 are the flexural rigidity and mass of a
reference plate neglecting stepped thickness, as given by D0 =Eh3

0 /[12(1− n2)] and
m0 = rh0, respectively. Here E and n are Young’s modulus and Poisson’s ratio, respectively,
and r is the mass density of the plate. On the other hand, the coefficients of flexural rigidity
and mass, d(x, y) and ah (x, y), respectively, are defined as

d(x, y)=1+ axiD(x− xi )+ ayjD(y− yj )+ axyi, jD(x− xi )D(y− yj ), (1)

ah (x, y)=1+0hxi

h01 D(x− xi )+0hyj

h01 D(y− yj )+0hxyi, j − hxi − hyj

h0 1 D(x− xi )D(y− yj ),

(2)

in which constants axi , ayj , axyi,j are given by

axi =3
hxi

h0
+30hxi

h01
2

+0hxi

h01
3

, (3)

ayj =3
hyj

h0
+30hyj

h01
2

+0hyj

h01
3

, (4)

axyi, j =3
hxyi, j

h0
+30hxyi, j

h0 1
2

+0hxyi, j

h0 1
3

− axi − ayj , (5)

and D(x− xi ) and D(y− yj ) are characteristic functions of the extended Dirac function.
The function D(x− xi ) is defined as a function where the Dirac function d(x− j) exists
continuously in the x direction through the ith stepped thickness, namely the region from
xi − bxi /2 to xi + bxi /2, in which j can take values continuously from xi − bxi /2 to xi + bxi2.
Similarly, the function D(y− yj ) is defined as a function where the Dirac function d(y− h)
exists continuously in the y direction through the jth stepped thickness, in which h can
take values continuously from yj − byj /2 to yj + byj /2. The characteristic functions
D(x− xi ) and D(y− yj ) proposed here are significant only in prescribed regions, but
meaningless in other regions. Namely, their functions have the same effect as the Dirac
function defined at a point inside the prescribed regions. Furthermore, the greatest merit
of these functions is to make formulation and integral including discontinuous quantity,
as shown in equations (17) and (18), more simple.
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Thus, the governing equation of a plate with stepped thickness, including the effect of
additional mass due to moving loads, is obtained by modifying the result of Takabatake
et al. [8] as follows:

m0ahẅ
D0

+
m� ẇ
D0

+
m̄ẅ
D0

+
cẇ
D0

−
p
D0

+ (dw,xx),xx +(dw,yy ),yy

+n(dw,xx ),yy + n(dw,yy ),xx +2(1− n)(dw,xy ),xy =0 (6)

together with the associated boundary conditions

w= w̄ or (D0dw,xx ),x + n(D0dw,yy ),x +2(1− n)(D0dw,xy ),y + vx =0, (7)

w,x = w̄,x or D0d(w,xx + nw,yy )+mx =0, (8)

at x=0 and lx ; and

w=0 or −(1− n)D0 dw,xy =mxy (9)

at the corners, in which m̄ is the additional mass due to moving loads, w is the deflection
on the natural surface of the current plate, w̄ and w̄,x are displacement and rotation,
respectively, prescribed from the geometrical boundary conditions, and mx and vx are
moment and Kirchhoff’s supplementary force, respectively, prescribed from the
mechanical boundary conditions. The similar boundary conditions may be written at y=0
and ly .

For uniform solid plates, since the characteristic functions D(x− xi ) and D(y− yj ) are
meaningless, the coefficients d(x, y) and ah (x, y) become one and the governing equations
are reduced to a general equation, including the effect of additional mass, for a uniform
plate.

3. FORCED VIBRATION OF A PLATE WITH STEPPED THICKNESS

The general solution of equation (6) is assumed to be of the form

w(x, y, t)= s
a

m=1

s
a

n=1

fxm (x)fyn (y)Fmn (t), (10)

in which Fmn (t) are unknown functions with respect to time t, and fxm (x) and fyn (y) are
the natural functions satisfying the specified boundary conditions of the current plate. As
stated before, the discontinuous variations of flexural rigidity and mass are expressed
continuously by means of a characteristic function extended from the Dirac function.
Therefore, the current analysis is unnecessary to prepare an imaginary cutting at the
discontinuities of rigidity and mass. Hence, although the assumption for the neutral surface
is used on the discontinuities, the continuous condition of the deflection at the
discontinuities is satisfied from natural functions used.

Applying the Galerkin method to equation (6), Fmn are obtained, from Takabatake et
al. [8], by solving the following equations:

s
m=1

s
n=1

Km̄n̄mn [F� mn (t)+2hmnvmnF� (t)+v2
mnFmn (t)]

+ s
m=1

s
n=1

[K(1)
m̄n̄mF� mn (t)+K(2)

m̄n̄mF� mn (t)]
1
m0

=
1
m0

Qm̄n̄ (t), (11)
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Figure 2. Isotropic rectangular plates with stepped thickness: (a) bxi /lx =0·2 (i=1, 2); (b) bxi /lx =0·3 (i=1, 2);
(c) bxi /lx =0·2 (i=1, 2), byj /ly =0·2 ( j=1, 2); (d) bxi /lx =0·3 (i=1, 2), byj /ly =0·3 ( j=1, 2).

in which the notations Km̄n̄mn , K(1)
m̄n̄mn , K(2)

m̄n̄mn and Qm̄n̄ (t) are defined as

Km̄n̄mn =g
lx

0 g
ly

0

ah (x, y)fxmfxm̄fynfyn̄ dx dy, (12)

K(1)
m̄n̄mn (t)=g

lx

0 g
ly

0

m̄(x, y, t)fxmfxm̄fynfyn̄ dx dy, (13)

K(2)
m̄n̄mn (t)=g

lx

0 g
ly

0

m� (x, y, t)fxmfxm̄fynfyn̄ dx dy, (14)

Qm̄n̄ (t)=g
lx

0 g
ly

0

p(x, y, t)fxm̄fyn̄ dx dy, (15)

and hmn are damping constants. The coefficients K(1)
m̄n̄mn and K(2)

m̄n̄mn are variable with respect
to time. Therefore, equation (11) can be solved by using the Wilson-u method.
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The explicit expression of equation (12) is written as

Km̄n̄mn =g
lx

0 g
ly

0

fxmfxm̄fynfyn̄ dx dy+ s
i=1

hxi

h0 g
lx

0 g
ly

0

D(x− xi )fxmfxm̄fynfyn̄ dx dy

+ s
j=1

hyj

h0 g
lx

0 g
ly

0

D(y− yj )fxmfxm̄fynfyn̄ dx dy

+ s
i=1

s
j=1

hxyi,j − hxi − hyj

h0 g
lx

0 g
ly

0

D(x− xi )D(y− yj )fxmfxm̄fynfyn̄ dx dy. (16)

Figure 3. Test loads for building slab.
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Figure 4. Dynamic deflections for a clamped plate P1 subjected to an unmoving load:—, Wilson-u method;----,
approximate solution; –w–, FEM.

The use of the characteristic function proposed here is powerful in the integral
calculation including the characteristic function. Namely, for a function f(x), the
integral calculation including the characteristic function D(x− xi ) can be written as

g
lx

0

D(x− xi )f(x) dx=g
xi +(bxi /2)

xi −(bxi/2) $g
lx

0

d(x− j)f(x) dx% dj=g
xi +(bxi /2)

xi −(bxi/2)

f(j) dj, (17)

in which d(x− j) is the Dirac function and j is a supplementary variable of x. The nth
derivatives of the characteristic functions can therefore be expressed as

g
lx

0

D(n) (x− xi )f(x) dx=g
xi +(bxi /2)

xi −(bxi/2)

(−1)nf(n)(j) dj, (18)

in which the superscripts enclosed within parentheses indicate the differential order. The
reduced integral is easily calculated by means of Chebyshev’s formula.
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T 1

Maximum dynamic deflections (mm) of clamped plates with stepped thickness subjected to
an unmoving load

Type Load Wilson-u method Approximate FEM

Walking 28·99 (1·02) 27·39 (0·97) 28·51
P1 Tripping 66·71 (1·04) 62·97 (0·99) 64·14

Bending and Stretching 112·0 (0·97) 105·7 (0·91) 116·1
Heel 125·0 (1·07) 116·4 (1·02) 119·4

Walking 20·11 (1·09) 16·94 (0·92) 18·57
P4 Tripping 46·24 (0·98) 38·96 (0·83) 47·47

Bending and Stretching 75·49 (1·09) 63·45 (0·91) 69·69
Heel 84·69 (0·99) 73·33 (0·86) 85·58

Note: (Maximum deflection ratio)=present theory/FEM.

4. APPROXIMATE SOLUTION EXCLUDING THE EFFECT OF ADDITIONAL MASS
DUE TO MOVING LOADS

Equation (11) is a coupled equation with the variable coefficients because of the effect
of additional mass due to moving loads. Then, in order to present an approximate solution
as closed-form for practical use, consider the following assumptions: (1) the effect of
additional mass due to moving loads is negligible, and (2) only the diagonal terms in
Km̄n̄mn are considered. Thus, equation (11) is approximated as the following uncoupled
equation:

dFmn : Kmnmn [F� mn (t)+2hmnvmnF� mn (t)]=
1
m0

Qmn (t). (19)

Equation (19) agrees with equation (43) proposed by Takabatake et al. [8]. The problem
of dynamic behaviour for current plates subjected to moving loads is an interesting subject

Figure 5. The effect of additional mass due to moving loads for plate P1 subjected to walking: —, includes
the effect of additional mass; ----, excludes the effect of additional mass.
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Figure 6. The effect of additional mass due to moving loads for plate P1 subjected to heel: —, includes the
effect of additional mass; ----, excludes the effect of additional mass.

in practice. So, in this section it is valuable to present explicitly the analytical method of
the plates subjected to moving loads. Then, the general solution of equation (19) is

Fmn (t)= exp (−hmnvmnt)[C1 sin vDmnt+C2 cos vDmnt]

+
1

Kmnmnm0vDmng
t

0

exp [−hmnvmn (t− t)] sin vDmn (t− t)Qmn (t) dt, (20)

in which C1 and C2 are constants determined from the initial conditions, vmn is the natural
frequency of current plate, and vDmn =vmnz1− h2

mn . The Duhamel integral in equation
(20) may be calculated approximately as follows:

wmn (t)=Amn (t) sin vDmnt−Bmn (t) cos vDmnt, (21)

in which Amn (t) and Bmn (t) are defined by

Amn (t)=
1

Kmnmnm0vDmn g
t

0

exp [−hmnvmn (t− t)] cos vDmntQmn (t) dt, (22)

Bmn (t)=
1

Kmnmnm0vDmn g
t

0

exp [−hmnvmn (t− t)] sin vDmntQmn (t) dt. (23)

Amn (t) are expressed approximately with the incremental form as

Amn (t)1Amn (t−Dt) exp (−hmnvmnDt)

+
1

Kmnmnm0vDmn g
t

t−Dt

exp [−hmnvmn (t− t)] cosvDmntQmn (t) dt. (24)

in which the first term on the right side indicates the value of Amn at time t−Dt and Dt
is incremental time. Similarly,

Bmn (t)1Bmn (t−Dt) exp (−hmnvmnDt)

+
1

Kmnmnm0vDmn g
t

t−Dt

exp [−hmnvmn (t− t)] sinvDmntQmn (t) dt. (25)
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Consider a concentrated load p(x, y, t) advancing along from the left support to the right
one at y= h with constant velocity v0.
Then

p(x, y, t)= d(x− v0t )d(y− h)p̄(t), (26)

in which p̄(t) is the amplitude of the moving load, depending on time.
The substitution of equation (26) into equation (15) becomes

Qm̄n̄ (t)= fn̄ (y− h)fm̄ (v0t)p̄(t). (27)

5. NUMERICAL RESULTS

To examine the solution proposed here for an isotropic rectangular plate with
eccentrically-stepped thickness, numerical computations were carried out for four kinds
of simply supported and clamped rectangular plates with eccentrically-stepped thickness,
as shown in Figure 2. The data used are as follows: span length lx = ly =6 m; the
slab’s thickness h0 =0·12 m; Young’s modulus E=2·06×1010 Pa (2·1×105 kgf/cm2,

Figure 7. Dynamic deflections for a clamped plate P1 subjected to a moving load: —, Wilson-u method; ----,
approximate solution; —w—, FEM.
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Figure 8. Dynamic deflections for a clamped plate P4 subjected to a moving load:—, Wilson-u method;----,
approximate solution; —w—, FEM.

2·987×106 psi); Poisson’s ratio n=0·17; and mass density r=2402 N s2/m4 (244·9kgf
s2/m4, 4·660 lb s2/ft4); the variation of the stepped thickness hi /h0 =0.5 and hjh0 =0·5. The
damping constants, hmn , are assumed to be 0·03 for all modes.

The external lateral loads take test loads checking the disturbing effect of the vibration
of floors caused by people walking and other everyday usage, as shown in Figure 3. The
test loads consist of four loading types: walking, tripping, bending and stretching, and heel.
These loading types are produced for 65 kg weight and the velocity for moving loads is
n0 =1 m/s except for v0 =2 m/s for tripping. The current shape functions fxm and fyn take
the following well-known natural functions for the simply supported beam and clamped
beam, respectively,

fxm =sin
mpx
lx

(28)

fxm =cosh 0lmx
lx 1−cos 0lmx

lx 1−
cosh (lm )− cos (lm )
sinh (lm )− sin (lm )$ sinh 0lmx

lx 1−sin 0lmx
lx 1% , (29)

in which lm represents well known constants.
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T 2

Maximum dynamic deflections (mm) of clamped plates with stepped thickness subjected to
a moving load

Type Load Wilson-u method Approximate FEM

Walking 28·73 (0·98) 27·19 (0·93) 29·49
P1 Tripping 65·05 (0·99) 62·60 (0·95) 65·88

Bending and Stretching 111·2 (0·98) 105·1 (0·92) 114·2
Heel 121·1 (1·02) 116·4 (0·98) 119·4

Walking 20·06 (1·00) 16·88 (0·84) 20·09
P4 Tripping 46·82 (1·00) 38·58 (0·82) 47·04

Bending and Stretching 74·67 (0·99) 62·94 (0·84) 75·66
Heel 79·27 (1·04) 68·19 (0·90) 76·23

Note: (Maximum deflection ratio)=present theory/FEM.

Firstly, Figure 4 shows the dynamic deflections at the midspan of the clamped plates
of type P1, subjected to the unmoving test loads at the midspan. In this figure, the solid
lines indicate values obtained from the numerical computation using the Wilson-u method,
the broken lines indicate values obtained from the approximate solution, and the solid lines
with circles indicate values obtained from the FEM code NASTRAN, in which the finite
element used is an isotropic rectangular plate element with 20×20 divisions for the whole
plate. The difference between solid lines and broken lines is too small to plot. Table 1 shows
the maximum dynamic deflections and the maximum deflection ratios obtained from the
proposed method compared to values obtained from FEM. The numerical results show
that the results obtained from the proposed method are in relatively good agreement with
the results obtained from FEM.

Secondly, Figures 5 and 6 show the effect of moving additional mass due to moving
loads, on the dynamic deflections at the midspan of type P1, subjected to various moving
loads of type walking and heel, respectively. In these figures the axis of abscissa indicates
the variation of weight of the additional mass. These results are obtained from solving
equation (11) by means of the Wilson-u method. The moving loads move along h= ly /2
in equation (26) and v0 =1 m/s except for v0 =2 m/s for tripping. It follows from these
figures that the effect of additional mass due to moving loads increases significantly as the
additional mass due to moving loads becomes heavier. The effect of additional mass due
to moving loads must be considered for plates subjected to heavy-weight moving loads,
such as the motorcar and airplane. However, the effect is negligible on the vibration of
building floors caused by people walking and other everyday usage.

Thirdly, in order to present practical uses for building slabs, the effect of additional mass
due to moving loads is neglected in the following numerical computations. Figures 7 and
8 show the dynamic deflections, excluding the effect of moving additional mass, at the
midspan of the clamped plates of types P1 and P4, subjected to moving test loads, in which
h= ly /2 in equation (26) and v0 =1 m/s except for v0 =2 m/s for tripping. Table 2 shows
the maximum dynamic deflections and the maximum deflection ratios. The numerical
results show that the analytical method proposed here is also applicable to the dynamic
analyses of current plates.

For these numerical models the series in the theory proposed here converges very
rapidly. The consideration of each of the nine terms for m and n gives sufficient accuracy
for all practical purposes.
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6. CONCLUSION

The general analysis methods for an isotropic rectangular plate with arbitrarily and
eccentrically-stepped thickness, subjected to moving loads along with the effect of
additional mass, have been presented by extending the theory proposed by Takabatake
et al. [8]. The effect of additional mass due to moving loads becomes significant when the
amplitude of additional mass is heavy-weight. However, the effect has been clarified to be
negligible on the the vibration of floors caused by people walking and other every usage.

Also, the approximate but accurate solutions proposed here, excluding the effect of
additional mass due to moving loads, have been clarified numerically to be usable in the
preliminary stage. Therefore, by comparing the dynamic response obtained from the
proposed theory with criteria and assessment for human response, such as the sensitive
curve of Meister [15], International Standard ISO 6897, and other standards in each
country, trouble in building slabs is avoidable in the preliminary stage of the design.
Kushida [16] discussed the relationships among these criteria and guidelines for evaluation
of habitability to building vibrations. Then, further research based on design sensitivity
analysis will be necessary to suggest the optimum rigidity and mass for slabs which cannot
satisfy the requirement on building vibration.
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APPENDIX: NOTATION

bxi , byj , hxi , hyj i and jth stepped widths and heights,
respectively

c damping coefficients
D0 flexural rigidity of solid plate
d(x, y) coefficient of flexural rigidity
D(x− xi ), D(y− yj ) characteristic functions
E, n Young’s modulus and Poisson’s ratio
fxm, fyn shape functions
h0 reference slab height
hmn damping constants
Km̄n̄mn , K(1)

m̄n̄mn , K(2)
m̄n̄mn coefficients

m0 mass per unit area of solid plate
m̄ additional mass due to moving load
p external lateral loads
Qm̄n̄ load term
vx, vy Kirchhoff’s supplementary forces
w deflection
ah coefficient of mass
d(x− xi ), d(y− yj ) Dirac functions
Dt incremental time
r mass density
vmn natural frequency
vDmn natural frequencies of damped plate


